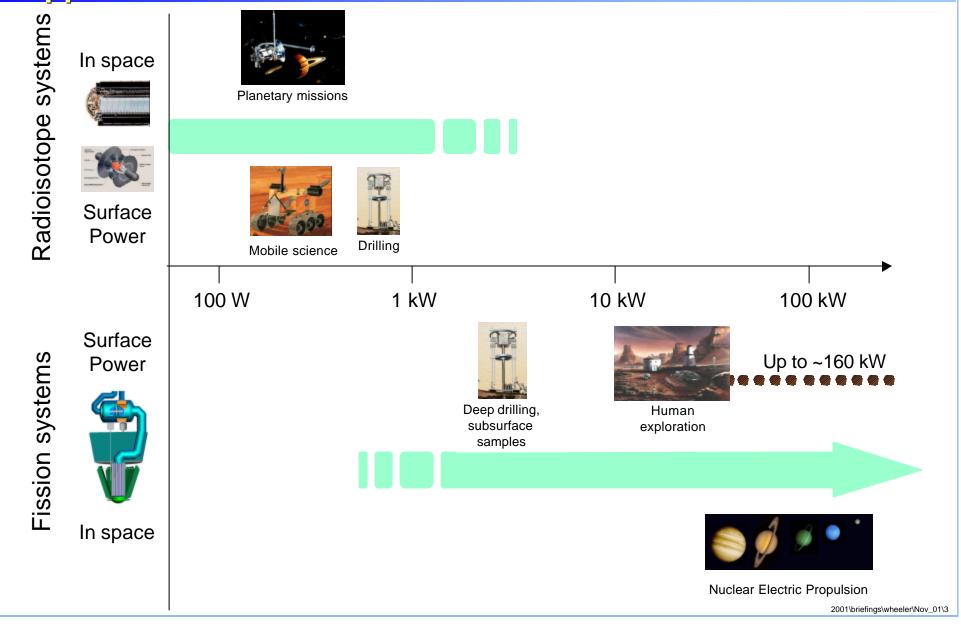


DOE Activities in Space Fission Technology

Jack Wheeler
Space and Defense Power Systems
Office of Nuclear Energy, Science & Technology

November 6, 2001


Office of Space and Defense Power Systems

Mission: Design, develop, demonstrate and deliver compact, safe nuclear power systems and related technologies for use in remote, harsh environments, such as space

Responsibilities:

- System development and test
- Safety analysis
- Maintenance of assembly and test infrastructure
- Integration and launch support
- Environmental Impact Statement support
- Public relations support
- State Department support for UN deliberations

Fission Energy Required for Higher Power Applications

Types of Space Fission Systems Included In Assessment


Surface Power Systems

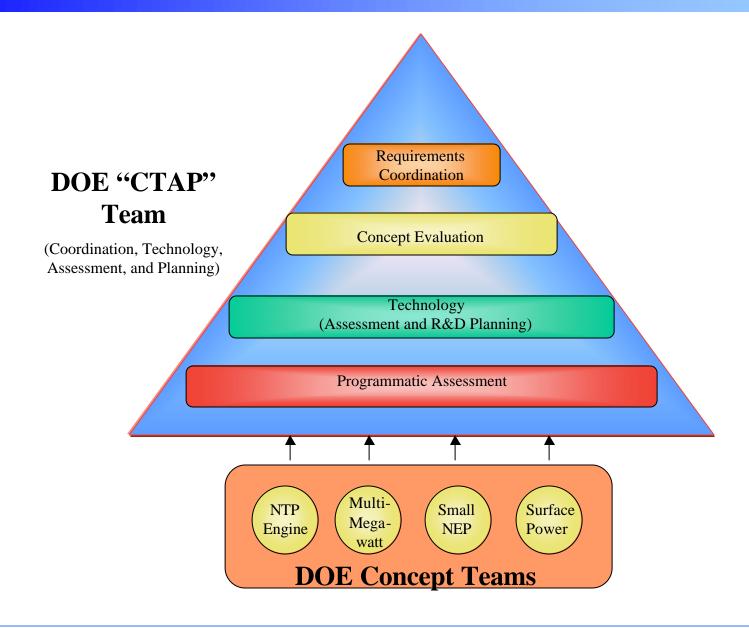
- Robotic missions to conduct science, perform exploratory drilling, prove resource utilization
- Human missions for science, life Support, transportation, propellant production

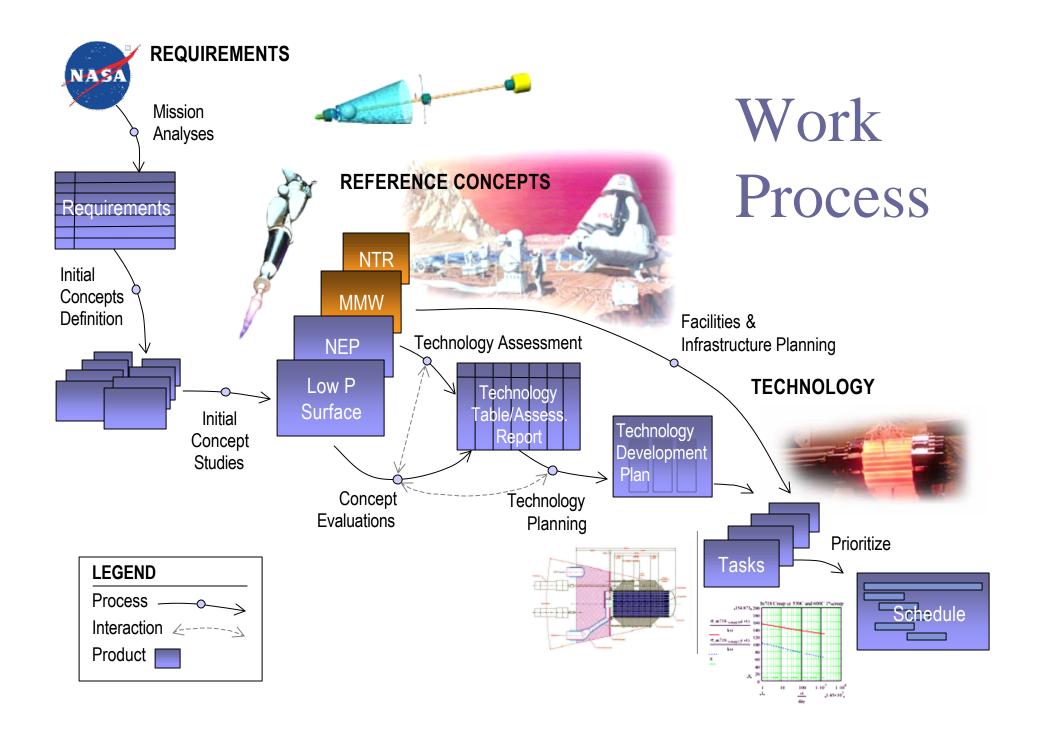
Small In-space Power Systems--for nuclear electric propulsion (NEP)

 Propulsion for robotic science missions--shorter transit times, longer duration, planetary rendezvous, and increased power for science and observation on arrival

Multi-Megawatt Power Systems

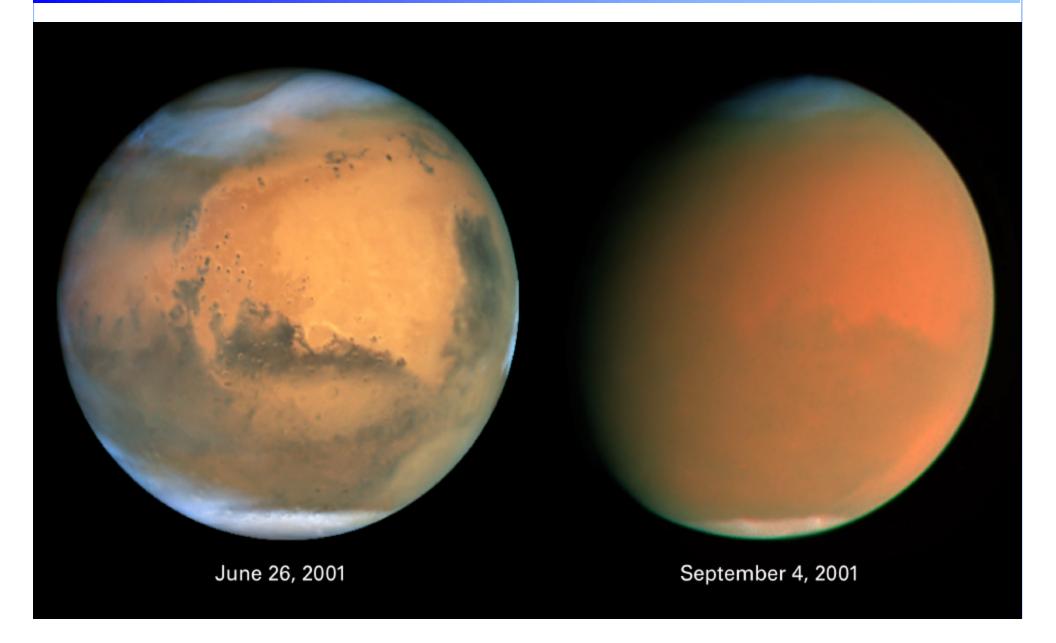
For rapid inter-planetary transport and human exploration




Nuclear Thermal Propulsion (NTP)

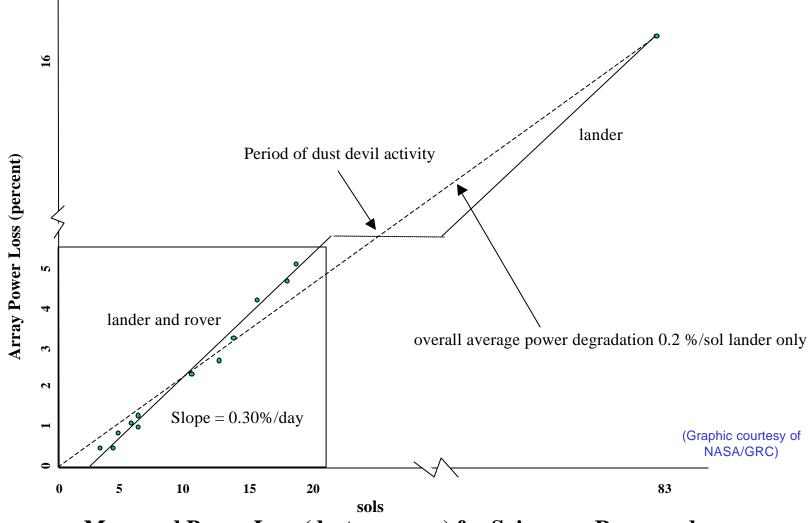
Propulsion and power (bimodal) for cargo and piloted missions

Structure for Assessment

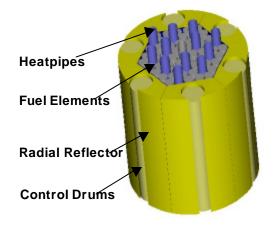

Mission-System Requirements Summary

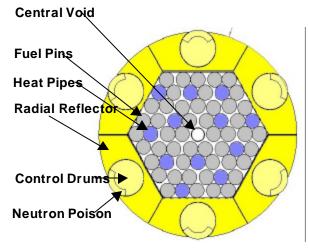
			Fis	ssion System Requirements		
Mission	Power level	Lifetime	Mass	Payload dose/shield	Operating environment	Other
In-space NTP						
Human Mars exploration	335 MWt	1 hr total = 2 yrs standby (5+ yrs)		10 ¹³ n/cm ² (1 MeV equiv) 5 x 10 ⁵ Rad (Si) Shadow to 4 m diam spacecraft	Earth-Mars space	Restarts for 4-6 burns over mission; 2500-3100 K H ₂ exit
(Bimodal operation)	(25-50 kWe)			@ optimum separation		temperature
Outer planet (Bimodal operation) Mars surface	20.5 MWt (20 kWe)	< 1 hr (10+ yrs)		"	Interplanetary space	
Initial robotic	2-5 kWe	5-10 yrs		10^{13} n/cm ² (1 MeV equiv) 5 x 10^{5} Rad (Si) 2-pi @ ≤1 km	Mars atmosphere & dust	Pre-launch sterilization
Outpost/human precursor	15 kWe 20 kWe goal	5 yrs; 10 yrs goal	≤ 1700 kg	"	"	"
First human mission	45-60 kWe	15+ yrs		4-pi, 5 rem/yr @ 90° 50 rem/yr @ 270° @ 2-3 km	"	п
Follow-on human exploration	100-160 kWe	15+ yrs		"	"	"
In-space NEP						
Outer planet	50 kWe	5 yrs full power; 10 yrs standby	< 2500 kg	10 ¹³ n/cm ² (1 MeV equiv) 5 x 10 ⁵ Rad (Si) Shadow @ optimum separation	Interplanetary space	
Interstellar	180 kWe	~ 10 yrs		· "	Interplanetary & deep space	
High power EP VASIMR for human Mars	5-10 MWe per unit;	<1 yr full power; 30-day standby	4 kg/kWe goal	10 ¹³ n/cm ² (1 MeV equiv) 5 x 10 ⁵ Rad (Si) Shadow @ optimum separation	Earth-Mars space	
				shadow & opumum separation	I	

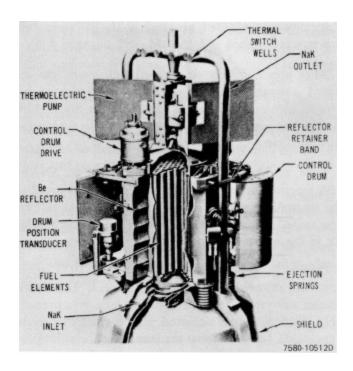
Proposed Near-Term Concept Evaluation Set


					Max	Power	Heat			
				Reactor	Fluid	Conver-	Rejection	Power	Technology	
Concept	Fuel	Clad	Spect	Cooling	Temp	sion	Mechanism	Level	Base	
In-Space:										
Gas-							Low-T, Flat		SP-100, GRC, PW, Allied,	
Cooled &				Pumped		He-Xe	or Conical,		Allison, Capstone, HTGR,	
Brayton	UN	Nb1Zr	Fast	He-Xe	1250 K	Brayton	LHP, H2O	50 kWe	ACRR	
	UN						Low-T, Flat			
Heatpipe &	or	Nb1Zr		Li		He-Xe	or Conical,		SP-100, LANL HP, GRC, PW,	
Brayton	UO2	or Moly	Fast	Heatpipe	1350 K	Brayton	LHP, H2O	50 kWe	Allied, Allison, Capstone	
							Low-T, Flat			
Liq Metal &						He-Xe	or Conical,		SP-100, GRC, PW, Allied,	
Brayton	UN	Nb1Zr	Fast	Pumped Li	1400 K	Brayton	LHP, H2O	50 kWe	Allison, Capstone	
-										
Mars Surfac	Mars Surface:									
Heatpipe &				Na			Vertical			
Stirling	UN	SS	Fast		1000 K	Stirling	panels	3 kWe	SP-100, LANL HP, GRC, STC	
Curing	514		i ast	i icatpipe	10001	Curing	pariois	O KVIC	OF 100, EARLING, OTO	
Lia Motal 9			Moder	Pumped			Vertical			
Liq Metal &	UZrH			NaK	900 K	Stirling		2 14/40	SNAP SP 100 GPC STC	
Stirling		33	ated	INdr	800 K	Stirling	panels	3 kWe	SNAP, SP-100, GRC, STC	

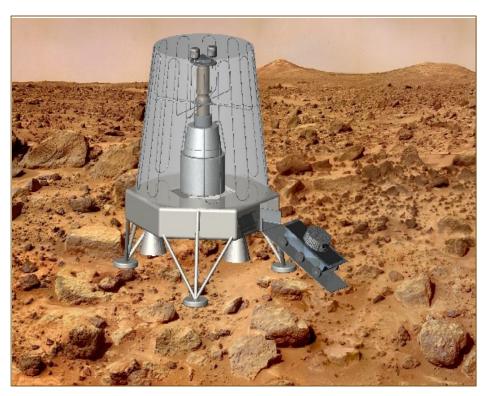
The Perfect Storm




Dust Accumulation Reduced Mars Pathfinder Power by ~16% in 83 Martian Days


Measured Power Loss (dust coverage) for Sojourner Rover and Pathfinder Lander Photovoltaic Arrays (GaAs 18% efficiency cells)

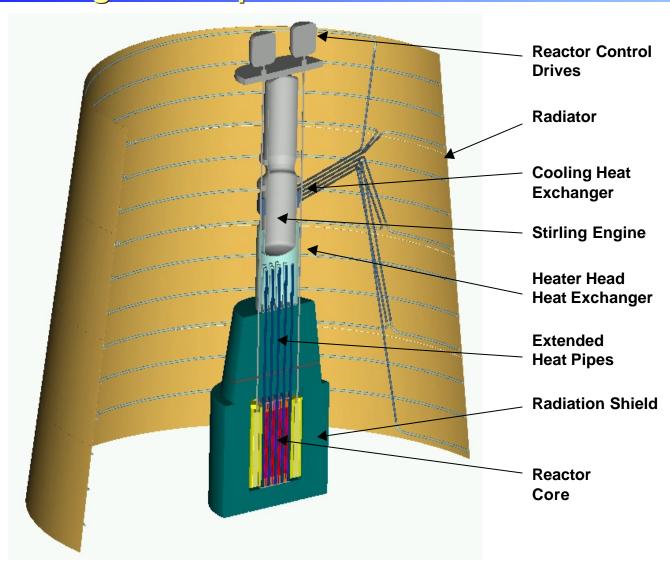
Mars Surface Power Concepts



SNAP-10A (U-Zr)H Fueled, NaK Cooled Stirling Engine)

Small Fission Power System Mass Estimates

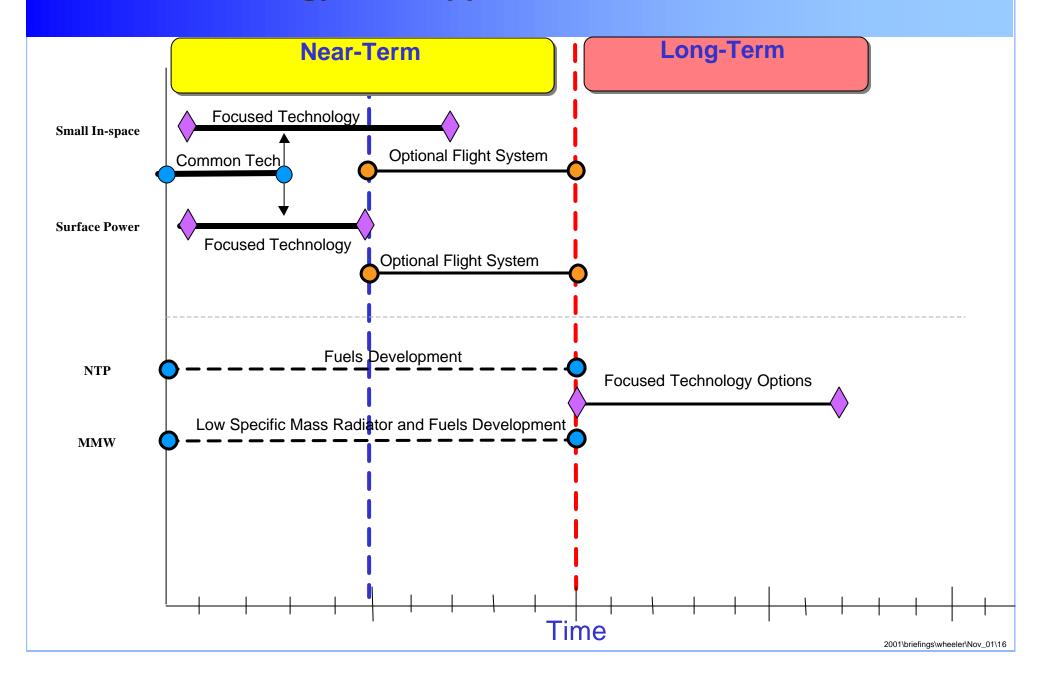
Very Small Fission Systems: 3-kWe Mars Power System (Preliminary Concept)



- 3 kWe EOM power
- 5 -10 year life
- 2.1 m high x 2.0 m OD
- Scalable to higher power
- Propose science mission/ system integration study for '02

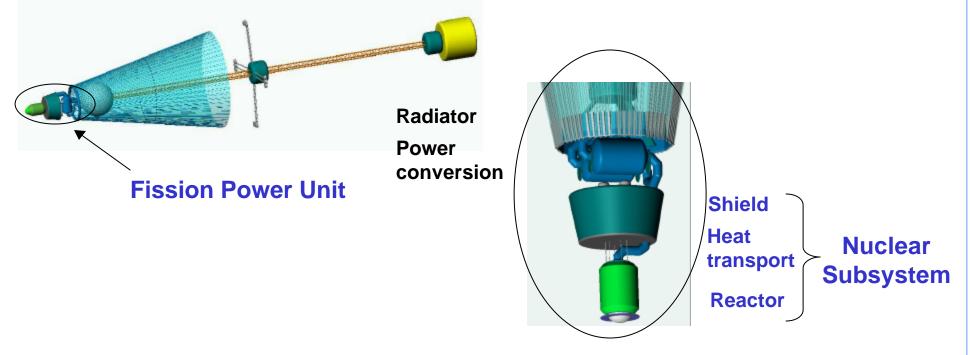
System can be designed to evolve to meet near and intermediate-term future needs

(in-space power, human missions)


Heatpipe Operated Mars Exploration Reactor 3 kWe Design Description

Technology Development Strategy

- Utilize past investments in space nuclear systems to reduce development cost
- Technology work to be focused and directed
 - focused on nuclear subsystem
 - directed by work on guiding concept(s) and applications
- Emphasis on near-term systems
 - smaller level of effort on more advanced technologies/applications
- Plan will evolve over time as more specific information and requirements develop and issues addressed


Fission Technology Plan Approach

Space Fission Technology Plan

- Preliminary DOE Technology Development Plan undergoing review
- Focused on nuclear subsystem
- Seeks to set direction for possible future DOE activities that could complement NASA technology activities in related areas

Nuclear Electric Propulsion Vehicle

Preliminary Concept/Technology Matrix for Near-Term Systems

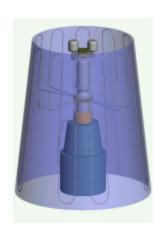
Concept	Core Cooling Components	Fuel		Clad		Reactor Control		Shielding	I&C
		Primary	Alternate	Primary	Alternate	Primary	Alter-nate		
In-Space (50kWe):					_	•			
Gas- Cooled & Brayton	Pumped He-Xe Loop with Tmax= 1250 K: Compressors, bearings, seals, possible gas-gas HX, fan technology			Nb alloy with Re diff barrier	Ta alloy with Re diff barrier	Solid, movable reflectors (Be. BeO):	Burnable poisons (Gd2O3, Sm2O3)	Integrated gamma (W) and neutron (Be, B4C, LiH shield assemblies	Sensors, Processors, Controllers, Switches, Wiring, Insulation, Feedthroughs, Emergency Control Power
Heatpipe & Brayton	Li Heatpipe (Tmax= 1350 K), liquid metal-gas HX		UO2		Re diff barrier (for UN) or Mo				
Liq Metal & Brayton	Li Coolant Loop (Tmax= 1400 K): liquid metal-gas HX, EM Pump	S							
Mars Surfa	Mars Surface (3kWe):								
Heatpipe & Stirling	Na Heatpipe (Tmax= 1000 K); Convective Liquid Metal HX	UN	UO2	SS	Super-alloys	Solid,		Integrated Proces	Sensors, Processors, Controllers,
Liq Metal 8 Stirling	Pumped NaK Loop (Tmax=1000 K): Liquid Metal HX, EM Pump	UZrH		SS	Super-alloys or Nb Alloy	reflectors (Be, BeO); B4C Control rods	Burnable poisons (Gd2O3, Sm2O3)	gamma (W) and neutron (Be, B4C, LiH shield assemblies	Switches, Wiring, Insulation, Feedthroughs, Emergency Control Power

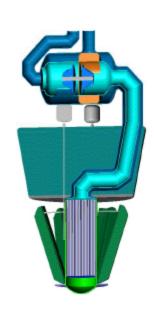
Assessment Summary for Concept Areas

Mars surface

- Concept evaluation set developed
- Defined concept for entry level system (3 kWe)
- Focused concept/independent assessment work on heatpipe/stirling

Small NEP


- Guiding concept set developed
- Some initial studies performed in FY 01
- Additional concept definition/independent assessment in FY02


Multimegawatt NEP

 Conducted analysis of liquid metal and gas cooled/Rankine and Brayton systems

Nuclear Thermal Rocket (NTR)

 Completed fuel element analysis and examination on performance parameters

Outlook for FY02

Focus on small in-space applications

 Initiate additional concept definition work, conduct associated independent review, address technical issues

As resources permit:

- Perform small study to address mission/system integration issues for surface power unit
- Support programmatic assessments

Examine options for future years